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ABSTRACT 

” 

The problem of minimum-fuel -consumption soft lunar landing 

t ra jector ies  is here  considered. 

impulses. 

The t ra jector ies  discussed involve two 

The boundary conditions a r e  arbi t rary.  

Pract ical  closed-form expressions for the impulse conditions of 

useful geometrical meaning a r e  derived. 

suitable for the formulation of the optimum problem using the method of 

undetermined Lagrange multipliers. 

Such expressions a r e  particularly 

The necessary conditions for  a minimum -fuel-consumption soft lunar 

landing a r e  derived fo r  both free-range and given-range problems. 

The method of numerical solution and several  applications a r e  discussed. 

The basic character is t ics  of the landing t ra jector ies  a r e  analyzed using the 

expressions derived. 

optimum trajectories starting a t  different points on a given elliptical orbit  

around the moon, the trajectory starting with a tangential retro-impulse a t  the 

apogee affords an absolute minimum fuel consumption. 

conditions imposed, a theoretical analysis shows that the t ransfer  orbit can not 

be of the Hohmann type. 

t ransfer  may closely approximate the Hohmann type. 

Numerical solution shows that, among al l  the f ree-range 

Due to the boundary 

Although, depending on the initial orbit assumed, the 
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b 
6 1. EQUATIONS O F  MOTION - IMPULSIVE SOLUTIONS 

Y 
It i s  assumed that a vehicle of mass  m i s  subject to the inverse-square 

gravitational force field of a uniform, spherical, attracting body of mass  M, 

and to a propulsive force T of a rb i t ra ry  direction. The forces  acting on the 

vehicle and coordinate system of reference a r e  shown in Figure 1. 

Referring the motion of the mass-point vehicle m (Figure 1) with 

respect to the intrinsic relative system associated with the tangent and normal  

( U t  and ) to the trajectory,  the following kinematic and dynamic (l inear n 
momemtum) equations a r e  obtained: 

r - V sin 8 = 0,  

r y  - v cos 8 = 0 ,  

k M m  m V  - B V  COS (6- e )  t sin 8 = 0 ,  
r e 

k M m  - B V  s i n ( 6 - 8 )  t cos e = 0 ,  e r 

2 v case 
m(v4 - r (4) 

rJ1 t 8 =  0. (5 )  

The las t  equation defines the mass-flow of the rocket engine. 

thrusting force i s  expressed T = 8 V = - &I V . Here,  V is the velocity of 
e e e 

the burned gases through the exit section of the rocket engine. 

Thus, the 

To the extent of writing the equations of motion in dimensionless f o r m  - 
which is more  convenient fo r  numerical applications - we introduce now the 

following variables (R = reference constant values): 

m 
m. 

e 
V r , v = -  p = -  p =  - 

R 
9 

1 e vR r 
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. 

Since the central  attracting body is assumed to be the moon, the radius 

of reference to be considered is the radius of the moon (i. e.,  r = rc ). R 
Introducing the previous dimensionless variables in Eqs. (1 )  to (5), 

( 0  ) and using a pr ime to denote total 
d k M  

7T- recalling that 

differentiation with respect to the dimensionless t ime 7, we derive 

- (e ) = 
dt 

R R  

sin 6 Q r V  

c1 
z ’  - - e c o s ( 6 - 6 )  t *2 = 0 , 

P 

s i n ( 6 -  e )  = 0 ,  e ’  t (T 1 - -)cos z e -- ve 
P c1z Z P  

( 9 )  

In general, these equations must be integrated numerically in order  to 

determine the powered trajectory of the vehicle. 

The study of the trajectory of vehicles powered by high-thrust rocket 

engines, however, may be substantially simplified using an approximate model 

of practical  value. If the powered periods of the flight a r e  of small duration, 

a s  compared to the total t ransfer  time, then one may replace the powered sub- 

a r c s  by impulses. 

instantaneous change in mass ,  velocity and angle of attitude of the vehicle. 

a resul t  of this approximation the equations of motion may be integrated in 

closed -form along the powered sub -a rcs ,  thus leading to a significant analytical 

simplification of the problem. 

order  to conduct comparative studies in which the relative mer i t s  of a number 

of t ra jector ies  must be analyzed. Such is precisely our interest  in this paper,  

since -among al l  lunar soft landing t ra jector ies  satisfying given boundary- 

conditions - we want to determine that trajectory which affords a minimum for 

the fuel consumption. 

Such impulses take place in zero-time and produce an 

As 

This solution is particularly advantageous in 
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. The impulsive solution has been previously applied by several  authors 

within the context of a different analytical formulation than that used in this 

paper. 

motion 

A s  we w i l l  see in the following our formulation of the equations of 

[Eqs.  (6)  to l o ) ]  , referred to the Eulerian intrinsic system 
- -  

( u t ;  un), leads to a closed-form solution of simple physical interpretation 

which i s  readily applicable to a new, ample formulation of the optimum 

problem, using the method of undetermined Lagrange multipliers. 

Since the impulse implies the instantaneous burning in a finite 

amount of propellant, this means that analytically in our  equations ct * a. 

Thus, eliminating the independent variable T (dimensionless t ime)  and taking 

the limit Q + a 

the equations of motion. 

and Eq. ( 9 )  and Eq. ( l o ) ,  af ter  taking the limit ci + a we obtain 

we can obtain the differential expressions of the impulse f rom 

In fact, making the ratios of Eq. (8) and Eq. ( l o ) ,  

V 

Eqs. (1  1) and (12) a r e  the differential expressions relating the changes in 

velocity ( z ) ,  angle of attitude ( e )  and mass ( P )  through the impulse. 

f rom Eqs. (1 1) and (12) we derive now Eliminating the variable P 

Since the angle of orientation of the thrust  ( 6  ) is  constant through the impulse, 

Eq. (13) i s  integrable in  closed-form leading to 

z sin ( 6 -  e )  = C 1  = const. 

Now, Eq. (1  1) implies 

dz = o ,  
d L n M  + c o s ( 6 - e )  e 

3 



b and, since from Eq. (13) 

d e  
tan (6 - 9) 

dz = z 

then 

= 0 .  d e  d L n P  t z 
v s i n ( 6  - 6 )  e 

Eqs.  (14) and (17), after eliminating z ,  lead to 

C l  d e  
= o ,  2 d L n U  t 

v sin ( 6  -9) 
e 

which is  readily integrable to 

c1  
L n u  t - c o t ( 6  - 8 )  Cz 0 

V e 

and with the help of Eq. (14) reduces to 

= c2 = const. LnU t - cos ( 6  - 9 )  
Z 

V e 

Eqs. (14) and (20)  give the set of closed-form expressions describing the 

impulse. F o r  any given direction 6 
z and angle of attitude 6 

depending on the amount of fuel burned (o r ,  what is equivalent, the mass of 

the vehicle before and after the impulse. 

of the impulse the values of the velocity 

a r e  readily obtained f rom Eqs. (14) and (20)  

Eq. (14) geometrically implies that through the impulse the vector 

velocity rotates with its free-end following a parallel to the direction of the 

vector T. This condition is shown in Fig.  2 where the quantities before and 

a f t e r  the impulse have been designated with the subscripts b and a,  respectively. 

Note, as a particular case of the previous conditions, we can obtain the equation 

for  tangential impulse as 

4 



which is derived from Eq. (20) for 6 = 8 and 6 = 8 t 77 , (8 = const), 

and which applies to forward and retro-tangential impulses 1 t and - signs, 

respectively 

1.1 Coasting Sub-arcs (Zero-thrust)  

Along the coasting sub-arcs of the t ra jectory the well known integrals 

of the two-body problem a r e  applicable. 

formulas introducing our dimensionless variables. 

integral of a r e a  a r e  respectively written 

We w i l l  briefly review here  these 

The energy integral  and 

2 2  - - = H = const., 
P 

P Z  COS 8 = K1 = const. 

The polar equation of the conic section described by the vehicle, 

at one of its foci is  

where the eccentricity is 

2 1 / 2  
e = (1 t K1 H) 

with origin 

F o r  elliptical orbits,  0 

respect to the inertial  system. 

determines the position of the apsidal line with 

F r o m  the previous equations one can easily derive that between an 

initial position 1 and a terminal condition 2 the range (o r  increment 

A Y  = Y 2  - Y1 of the central angle) 

= arcos  f - a r c o s  f l  9 
2 r )  = Y 2  - Y 1  

5 



. 

1 /2  2 2  
1 t P ( z  cos 6 )  (Pz - 2)] 

b 

where 

2. EQUATIONS O F  CONSTRAINT AND OPTIMUM PROBLEM 

The problem to be considered in the following is that of optimum 

transfer  of the vehicle f rom given orbital  conditions around the moon to a 

soft landing on the surface of the moon with minimum fuel expenditure. 

assumed that: 

It is 

a) 

b) 

The initial orbit  ( o r  point on the orbit)  is a rb i t ra ry ,  

The t ransfer  is  effectuated by means of two impulses,  

de-orbit and the second-on the surface of the moon-to adjust the 

landing conditions to the specified end-values, 

The vehicle soft-lands normal  to the surface of the moon. 

the first to 

c )  

A schematic of the trajectory problem formulated is  shown in Figure 3. 

Since the maneuver involves two impulses,  the whole t ra jectory between the 

initial (i) and final ( f )  point may be thought of as a three sub-arcs transfer.  

That is ,  the f i r s t  sub-arc corresponds to the first impulse and takes the 

vehicle f rom the initial conditions (i) to conditions (1) at the initiation of the 

coasting sub-arc. 

f r o m  conditions (1) to conditions (2).  

on the surface of the moon which t r ans fe r s  the vehicle f rom conditions ( 2 )  at 

the end of the coasting, to the final specified terminal conditions (f) .  

The second sub-arc t r ans fe r s  the vehicle on a coasting flight 

Finally, the third sub-arc is  an impulse 

Using the previous concept and Eqs. (14), (20), (22 ) ,  ( 2 3 )  and (26)  we 

can obtain the following basic equations of constraint of the problem 

(28) 
- 

(p l  = z .  sin ( 6  - e.) - z sin ( 6  - e l )  = 0 ,  
1 1 1  1 1 

6 



- 2  - - z - z  2 -2(+-*)=o, 
( p 3  1 2 

- cos e l  - D cos e = o , 
(P4 = p1 z1 2 2  2 

- - - z sin ( b 2  - e2) - zf sin (6 - e f )  = o , q 5  2 2 

- (p7 - - q t f l  - f 2  = 0, 

( F 8  - P ; - P 1  = o ,  - - 

(34) 

(35) 

- (ClO = c L l  - c L 2  = 0 .  

According to our previous considerations, w e  w i l l  assume the following 

set  of a rb i t ra ry  initial and final conditions (in our case  the latter w i l l  

correspond to  normal  soft landing conditions): 

- 2 C i 2  - - z . - B =  0 ,  $ l  P i -  A =  0 ,  
1 

- P - E =  0 ,  $ 6  - - z f - F =  0 ,  
f 

$ 7  = e - H = O ,  A , B , C , D , E ,  F , H  = given constants. 

The equations of constraint and boundary conditions form a set of 17 equations 

in 19  unknowns. These unknowns a r e  the values of P ,  z ,  8 and Cr a t  each 

7 



of the points i, 1, 2 and f ,  and the values of r l ,  6 and 6 Thus, the 

problem has two degrees of freedom, and an optimum requirement may be 

imp0 sed. 

2' 

Before treating the optimum problem, however, it i s  convenient to 

replace the boundary conditions in the equations of constraint in o rde r  to 

reduce the number of variables and equations. 

of constraint obtained is 

Thus, the final set  of equations 

Q 3 -  - 2  - z - z  2 - 2 ( T - - ) = ~  1 1 2 - Z  2 - M = O ,  
1 2 E 1 2 

- 
q4 = A z1 cos e - E  z2 cos 8 = 0 , 1 2 

- 
(F7 - - q t f l  - f 2  = 0 , 

where - 
(44) 

(45) 

2 

2 
cos e ) - 1 

2 

2 

f l  = arcos  

f2  = a rcos  

8 



The previous equations form a set of 7 equations in 9 unknowns. 

unknowns a re :  z l ,  z2, e l ,  e2, P1, P f ,  b l ,  b 2  and 7. 

retains two degrees of freedom, which means that in order  to obtain an 

optimum solution two optimum equations must  be added to the previous set. 

These two equations a r e  derived f rom the necessary conditions for an  

extremum, as we w i l l  show. 

The 

The problem thus 

The optimum problem to be considered is  therefore stated: "among 

a l l  solutions satisfying the formulated two -impulse, soft -landing problem 

find that solution which minimizes the fuel expenditure. 

The optimum problem is treated in Section 3. 

3. ANALYTICAL TREATMENT O F  THE OPTIMUM CONDITIONS 

The problem of minimizing the fuel consumption subject to the con- 

s t ra ints  given by Eqs. (38 )  to (44) (which embody in themselves the equations 

of motion and the boundary-conditions), i s  equivalent to that of maximizing 

the final mass of the vehicle. 

expressed analytically as 

Thus, the function to be minimized may be 

= - p f  = minimum, 

is equivalent to maximizing b f ,  (final mass). 

To the extent of obtaining the optimum solution, we introduce now a set 
- b f  

since the minimization of 

of undetermined constant Lagrange multipliers X and fo rm the so-called 

Euler  -Lag range fundamental function : 
j 

A =  V i -  X . P  , j = Is..., 7. 
~j 

If 0 affords a minimum for any admissible set  of differentials 

dz 

condition for  an extremum (dA = 0) requires  

dzZ,. . . .o. . . . . ,  dv of the variables of the problem, then the necessary 1' 

3 A  
a n  

- -  -- = 0 .  ....... - - a A  
a Z  - - -  a A  

a Z  
2 1 

(47) 

9 



Eq. (47) provides 9 equations (known as  Euler  equations) which together with 

Eqs. (38) to (44) gives a set  of 16 equations in 16 unknowns: h . , h 7 s  

z l ,  z 2 ,  e l ,  fI2 ,...... 0 ,  7 7 .  

3.1 Two Important Optimum Problems - General Set of Euler  Equations 

F r o m  an analytical and practical point of view, two cases  are of 

special interest  in the problem we are considering. 

necessary  condition for a minimum is dA = 

the differential of range must vanish, i .e . ,  

In fact, since the 

0, the t e r m  associated with 

Eq. (48) implies that since no boundary conditions have been imposed on r )  for 

the problem formulated in paragraph 2 (i. e . ,  f ree-range problem), then 

dr) # 0 and consequently h = 0. This means that to the extent of treating 

such problems we can disregard Eq. (44). 
7 

Thus, we can reduce the formula- 

2' tion of this case  to a set  of 6 equations in the 8 unknowns: z l ,  z2, d e 
p , ,  pf, 61 and 6 (two-degrees-of-freedom problem). 

2'  
However, i f  a boundary condition of the fo rm 

- g8 = r) - N = 0 ,  N = const. , (49) 

is  added to the boundary conditions given in paragraph 2 (i. e . ,  given-range 

problem) then dr) = 0 and # 0. In this case ,  r) i s  no longer a variable 

of the problem, which now involves a set  of 7 equations in 8 unknowns (one- 

degree -of -freedom problem). 

7 

In order  to have a general set  of Euler  equations we w i l l  retain Eq. (44) 

Then, depending on the type as a constraint with its associated multiplier A ,  

of problem we consider, w e  w i l l  set h = 0 o r  h ,  # 0. 
7 

The general set of Euler  equations obtained is  then 

10 



C0S(bl -e l )  
q 8 ~ - X  1 s in(6 1 - e l )  - X 2 v  t 2 x 3  z1 t A, ~ c ~ s e ~  - 

e 
(50) 

2Az  s i n 8  cos  8, 
= o ,  1 1 

2 2 - 1 t A(z lc0s  e l )  (A z -2) 
1 

c o S ( g 2  - e2) 
s i n ( 6  -e2)  t X 6  t 

V 
e 

2 

= 0 ,  
2 

~ E Z  s i n 8  c o s 8  

1 t ~ ( z  c o s 8  ( E Z ~  - 2) 

2 2 
2 2 

2 2 

- sin(bl - e l )  
- X 4 A s i n 8  t 

1 
p l 0  = x 1  cos ( b l  - e,) - A, 

V 
e 

Az [l t cos  2 el (Az12 - 2)] 

= o ,  1 
4- A -  7 q 

L 1 t A ( z l c o s 8  )L (Az - 2) 
I 

1 1 

- - 
s in(6  2 - e 2 )  

e 
(P l1  - x 4 E  s in  e - X 5  C O S  ( 6  - e 2 )  t X 6  - - 2 2 V 

2 E z  [I t cos e2(E z - 2)] 
= 0 ,  

2 2 - A 7  3 3 ' 
1 t E ( Z ~  C O S  e,)" (E z2 " - 2) 

- 
'F12 = - X 2 t h  = 0 , 6 

= o ,  - '6 
= 1 t -  

Pf '13 

z s in(6  - e l )  -B s in(6  -C) 
= 0, 

(56)  

= A l p  COS(G1-C) - z  cos (6  -e1 )  t x 1 1 1 
V 1 1 1 e 

'1 4 

11 



. = 0. 2 - e 2 )  
F sin( 6 - H ) -  z sin( 6 2 2 

e 
V 2 

The solution of this set  of Euler  equations w i l l  be considered in Section 4. 

4. OPTIMUM CONDITIONS FOR FREE -RANGE PROBLEMS 

As shown before,  in Eqs. (50) to (57) = 0. Furthermore,  

Eqs. (38) and (42) show that the second t e r m  in the left-hand member  of both 

Eqs. (56) and (57) vanish. 

physical reasoning indicates that Eqs. (56) and (57) can only be satisfied with 

Thus, in  v i e w  of Eqs. (39) and (43), a simple 

A ,  = x 5  = 0 . (58) 

Eqs. (54) and (55) readily lead to 

x, = X 6  = - / A f  . (59) 

Replacing the previous conditions in Eq. (53) we can derive 

elf sin(6 - e,) 
E v sin e 2  

2 
(60) 

- - 
e 

Eqs. (58) to (60) replaced in Eq. (52) provide the following first necessary  

equation for  an optimum: 

F r o m  Eqs. (50) and (51) w e  can derive 

cOs(bl - e,) cos(b2  - 6,) 

2 "6 V 
- x 4 ~ c o s  e l  t A ,  - h 4 E c o s 8  

V 

which af ter  introducing Eqs. (59) , (60) and (61) leads to the second necessary  

condition fo r  an optimum: 

12 



b 

. 1 
COS 8 - AZ C O S  8 

2 2 1 

Eqs. (61) and (62) a r e  the two necessary optimum equations which added to 

Eqs. (38) to (44) form a determined optimum set  of 9 equations in the 9 
unknowns: z l ,  z2,  e l ,  e 2 ,  p 1, p f ,  6 1, 6 2  and q. Using this set  of equations 

we can obtain an optimum condition expressed only in t e rms  of the variables a t  

point 1, after the f i r s t  impulse. 

numerical solution of the problem. 

This expression is of practical  value f o r  the 

In fact, f rom Eqs. ( 3 8 ) ,  (40), (41) and (61) one can derive,  respectively 

B sin(6 - C )  

1 
s i n ( 6  - e l )  = 9 

Z 

z =  2 J.12--, 

z - M  
sin 8 = 

2 
1 

E sin( b1 - e l )  
s i n ( 6  2 - e2) = A sin 8 ( 6 6 )  

z - M  
1 

1 

The expressions for  cos 8 and cos(6 - 8 ) follow easily f rom the previous 

equations. 

extensive manipulations we can derive the following necessary condition: 

2 2 2  
Thus, replacing these expressions in Eq. (62) and performing 

2 sin(bl-  8,) - ( z l  - M) sin 8, COS (61 - 

1 [ f ;  1 
2 2 ) s i n  8 t - sin(6 - 1 

(67) 
13 



b Simple geometrical considerations derived f rom Fig. 2 and our developments 

in paragraph 1 show that 

z sin 8 - B sin C 
1 1 

1 1 
tan b 1  = z COS 9 - B  C O S  C 9 

and, consequently, Eqs. (67) and (68) implicitly express  the optimum con- 

dition in Eq. (67) a s  a function of the fo rm 

0 = n ( z l ,  e l )  . 
5. OPTIMUM CONDITION FOR GIVEN-RANGE PROBLEMS 

In this case ,  a boundary condition of the form given in Eq. (49), is 

assumed imposed. Therefore,  our problem is formulated in t e r m s  of 7 

equations i .e. ,  Eqs. (38) to (44) in 8 unknowns; z l ,  z2, e l ,  e 2 ,  P l l  p f ,  

61 and 6 

in paragraph 3.1, A # 0. The necessary optimum equation which saturates 

this degree of freedom may be derived f r o m  the Euler  equations. In order  to 

present the equations in a more  compact form,  we w i l l  introduce the following 

This is a one degree of freedom problem in which, a s  discussed 
2' 

7 

notation: 

2 

1 t P ( z c o s  9 ) 2 ( 6 z 2 - 2 )  

P ( z c o s 8 )  - 1 
f = arcos  

2 p z  sin 6 cos e - a f  = f  = -  
a, Z 1 t P ( z c o s 8 )  (Dz - 2 )  

2 2  1 

Note that in this problem, as  in  the previous case,  

X 1 = X 5 = 0  , 

14 



X 2 =  X 6  = - M f  , ( 7 4 )  

Thus, introducing these replacements in Eqs. ( 5 2 )  and ( 5 3 )  we obtain a set  

of two algebraic,  nonhomogeneous equations in X and k 4 7. F r o m  these 

equations we can derive 

f9  sin(6 - e2) - f q  sin(6 1 - e l )  
2 2 1 

- A sin 8 f 
e2 e 

A sin 8 sin( 6 - e2) - E sin e 1 2 2 
- A sin 8 f 

sin(bl - e l )  

82 
e v 

( 7 5 )  

where the subindex of f 

the function is  evaluated, 

(and f e Z 
in the following) indicates the point at which 

F r o m  Eqs. (50) and ( 5 1 ) ,  a f te r  eliminating X we now obtain 3’ 

5 [  cos@ - e2) - z2  - e l )  t X ~ ( E Z ~  - A Z  C O S  e ) t 
2 2 1 

2 1 V 1 
e 

t X 7 ( Z 1  f z  - z f ) = 0 . 
1 

2 2  2 
( 7 7 )  

Finally, introducing Eqs. (75 )  and ( 7 6 )  in Eq. ( 7 7 ) ,  and rearranging, it follows 

that 

15 



Eq. (78) provides the necessary condition for an  optimum which together with 

Eqs. (38) to (44) suffices to determine the minimizing t ra jectory for given 

range. 

this case,  it is convenient to express Eq. (78) in  t e r m s  of the variables at 

point 1 (beginning of the coasting sub-arc). 

expressions derived f rom previous equations: 

As in the previous problem, to the extent of the numerical  solution of 

For this,  w e  can use the following 

-4TT-E 9 

1 z -  
2 

F sin ( 6 ,  - H) 
L 

sin ( b 2  - e 2 )  = 
J z  ‘ - M  

1 

1 

1 

E m  
1 

A Z  cos e 1 
cos 8 = # 

(79) 

F t z sin F) 2 
2 = arctan [ z2 cos e 2  2 ]  , (for 8, = - n / 2 )  , (82) 

Eqs. (78) to (82) implicitly express the necessary condition for an  optimum 

in terms of the variables z and 8 1 .  1 

6. GENERAL CONSIDERATION ON THE NUMERICAL SOLUTION O F  THE 
PREVIOUS PROBLEMS 

The numerical  solution of the problems previously considered appears 

somewhat complicated due to the form of the equations fo r  an  optimum obtained 

and the transcendental character  of these expressions. However, such 

difficulties may be easily resolved based on the analysis of the impulse con- 

ditions presented in paragraph 1 and basic geometrical relations implied by 

such developments. 

solution based on a one-dimensional search of the values of z and 8 which 

satisfy the optimum equations [Eqs. (67) and (78)] . Once these values a r e  

determined w e  can obtain the res t  of the optimum values along the trajectory 

without difficulty, as w i l l  be shown in the following. 

This permits us  to  develop a technique of numerical  

1 1 
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F r o m  our analysis in paragraph 1 we find that is  convenient to 

introduce the angle 

OL = arctan 

Using this angle 

of orientation of 

- z .  cos(el-  ei) 1 1 1 .  
and simple geometrical relations we can determine the angle 

the first impulse ( 6  ). In fact ,  fo r  1 

a )  z1 - Z. cos(bl - e.)  < 0 , = w t el t Q 
1 1 

6 = e l +  - 7T 
1 1 1 2 '  b) z1 - z. cos(e - ei) = o , (84) 

Thus, 

z = B ,  Q i  = C ,  and the variables z 

( z l ,  e l ) ,  
of the impulse 6 

is  shown in Fig. 4. 

is  obtained from Eq. (83)  as a function of the boundary conditions 

and 0 Knowing the optimum se t  
i 1 1' 

satisfying Eqs. (67) and (78), we can then find the optimum direction 

A graphical representation of the case z - z. cos(8 - e.) > 0 
1 '  1 1  1 1  

In Fig. 5 we show the cases of impulse with initial angle of attitude 

negative (i. e. , 8. < 0 in Fig. 5 . A )  and impulse with initial angle of attitude 

positive (i. e . ,  8 .  > 0 in Fig. 5. B). 

assumed that z , 8. and 8 a r e  known. In other words, we assume that the 

direction 8 

magnitude is not. 

0 5 z 

which the angle 6 

This construction is of practical value in order  to have a simple geometrical 

way of verifying the numerical computations of 6 
principally, it provides a graphical interpretation of the method of numerical  

solution followed in order  to organize a systematic one -dimensional search 

of the values of z 

1 

In constructing these figures we have 
1 

i i  1 
of the vector velocity af ter  the impulse i s  known, but i t s  1 

If we now assume that z may take all the possible values 1 
5 Q) , we can determine the angular sector (shadowed in Fig.  5) within 1 

1' of the impulse must l ie for  such fixed 8 and any z 1 1 

Furthermore,  and 1' 

and 8 1 1 which satisfy Eqs. (67) and (78 ) .  

17 



opt. ’ 81 lopt. 
The method of solution followed in order  to determine e 

is shown graphically in Fig. 6. The values of z. and 8. are  given 

1 1 

1 1 
6 

by the boundary conditions. We then assume a given 8 and let  z take 

different values z z , etc., as  shown in Fig.  6. Fo r  each value of 

z assumed, there  is a corresponding value for  6 These values are  called 

lopt. 

11’ 12’ ‘13 

1 1’ 
6,,,  612 and 6 in Fig.  6 and a r e  numerically computed using Eqs. (83) and 13 
(84). 

they are satisfied o r  not. 

unique. 

These values a r e  then replaced in  Eqs. (67) and (78) to verify whether 

Numerical applications show that the solution is  

Thus, there  is  only one set  satisfying Eqs. (67) and (78). 

The values of the variables a t  the point 2 (end of the coasting sub-arc)  

can be readily computed f r o m  the equations of motion as a function of the values 

at point 1, as shown in previous paragraphs. 

t ransfer  orbit  must hit the surface of the moon a t  point 2 (o r  at least  graze it 

so the boundary condition P f =  P 2 =  P = E is satisfied), then it must  be 

- < 9 5 0. And, moreover,  since for  a soft-landing z < z then w e  

obtain (similar to the first impulse) 

Fur thermore ,  since the coasting 

moon 

2 2 f 2’ 

I 6 = e f  t u ,  
2 

for:  z - z cos(Flf - e2) > 0 , f 2  

z sin(ef - 
z f 2  - z cos(ef 

2 
c1 = arctan 

A graphical representation of the conditions before and af ter  the second impulse 

is shown in Fig. 7. 

8 and 6 are  determined, the Thus, once the values P 1  = Pi , z l ,  
1 1 

and 6 may be easily computed. All these values D~ = pf , z2, e 2  2 
values 

are used to compute Eqs. (61), (62) and (67) o r  Eq. (78) - -  depending on 

whether we a r e  dealing with a free-range o r  a given-range problem - -  and thus 

verify if the necessary equations for  an optimum are  satisfied. 

propellant expenditure is  computed f r o m  

The total 

18 



B cos(bl-c)t cos(62-e2) - z l C O S ( 6  1 1  -e ) -F cos(6 2 - H) 
2 

V 

(87) 
e 

= 1 - exp. 
Prop 

c1 

which derives f rom Eqs. (39)  and (43) for p i  = D = 1. 

The procedure of numerical solution outlined, based on a one- 

dimensional search of the optimum values, may be easily programmed for  

automatic computation since it involves simple calculations of algebraic 

expressions. 

multiple values of the trigonometric functions have now been removed using 

simple geometrical and analytical considerations which derive f rom the impulse 

conditions previously studied. 

In these expressions the difficulties associated with the possible 

In our analysis we have assumed that the n-dimensional space of 

admissible solutions defined by the variables of the problem is unbounded. 

However, the requirements that the coasting t ransfer  between the points 1 and 

2 be elliptical and hit the surface of the moon implies certain inequality con- 

s t ra ints  that bound the domain of admissible solutions. Consequently, should 

one encounter a solution in common with the boundaries, i t  i s  convenient to 

compute the fuel consumption for some admissible t ra jector ies  near  the 

boundaries, interior to the admissible domain, in order  to verify the actual 

character  of the optimum solutions on the boundary. 

inequality constraints imposed result a s  a consequence of the fact that the 

coasting t ransfer  i s  elliptical and that i t  must hit,  o r  a t  least  graze,  the 

surface of the moon. Thus, 

f ollo wing in equalit ie s 

In our problem the 

such conditions require the satisfaction of the 

2 - - < o ,  2 

1 'i 
Z 

2 1 .  2 2 (89) 
2 - -  

'i 
1 
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When Eq. (89) is satisfied with the equal sign the t ransfer  coasting sub-arc  

grazes  the surface of the moon, and if  it is la rger  than one the t ransfer  does 

not hit the moon. 

grazing solution. 

the program of numerical computation described before since they a r e  only 

functions of z and 8 As the practice has  shown, the introduction of these 

inequality constraints expedites the procedure of solution since they permit  

us  to eliminate several  cases  from consideration. Thus, the computational 

work required to obtain the optimum values of z 8 and 6 is substantially 

reduced. 

The solution with the equal sign identified the limiting, 

These inequality constraints can easily be incorporated in 

1 1' 

1' 1 1 

7. BASIC CHARACTERISTICS O F  THE LANDING TRAJECTORIES - 
NUMERICAL APPLICATIONS 

Based on the scheme of numerical solution previously discussed, several  

applications have been conducted. 

an angle of attitude 8 = 0, 8. > 0 and 8 .  < 0, the initial point assumed in 

each case has been located on a given elliptical orbit around the moon. Thus, 

a l l  the optimum landing trajectories considered s t a r t  f rom the same elliptical 

initial orbit. 

same time compare al l  the optimums in order  to determine the absolute 

optimum. 

elliptical orbit w i l l  be thus determined. 

In order  to analyze different cases  involving 

i 1 1 

This w i l l  permit us to study each case  individually and a t  the 

The most convenient point to s t a r t  the landing maneuver from an 

The arb i t ra ry  initial orbit assumed has  a dimensionless semi-major 

axis a = 2.25 and an eccentricity e = 0.3333. Consequently, the dimensionless 

radius of the apogee is /3 = 3 and the radius of the perigee is /3 = 1.5. 
aP per. 

The corresponding velocities a t  apogee and perigee a r e  z 

Z = 0.9428, respectively. The reference velocity used in these computa- 

tions is the satellite velocity on the surface of the moon, 

and the reference radius i s  the radius of the moon, r = 938.54 n. miles.  

The landing velocity assumed is z = 0.00184, which corresponds to 10 f t / s ec  

= 0.4714 and 
aP 

per. 
= 5,420 f t /sec.  vR 

M 

f 
and the landing is normal,  i .e. ,  e f  = - r / 2 .  
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7.1 Analytical Considerations on the F r e e  -Range Optimum Trajector ies  

In the following we w i l l  discuss free-range problems. 

We observe that i f  the f i rs t  impulse corresponds with a tangential 

and 6 = o r  6 = n t el. Thus, forward o r  re t ro- thrust ,  then 6 = 6. 1 1  
sin ( b l  - €I1) = 0 and either 9 = 0 o r  6 In the first case,  obviously 1 1 
sin( 6 

1 1 
# 0. 

- e l )  = 0 and €Il = 0 satisfy both necessary conditions in  Eqs. (61) and 
1 

(62). In the second case,  replacing sin(6 

we obtain M z sin 6 = 0, which therefore is not satisfied because M # 0 

and z 

optimum landing with initial tangential thrust  can only occur f o r  6 

i. e. ,  a t  the apogee o r  perigee of the initial elliptical orbit. 

a t  points of the initial elliptical orbit other than its apogee o r  perigee),  no 

- e,) = 0 and s ine1  # 0 in Eq. (67 )  1 
2 2  

2 1 
# 0. Thus, the previous considerations lead to the conclusion that an 

= 6. = 0 , 
2 

1 1  
If 8. # 0 (that is ,  

1 

tangential thrust  is  admissible for a n  optimum solution and therefore sin( 6 - e l )  # 0. 

In such case ,  the minimizing trajectory which satisfies Eqs. (61) and (62) is 

obtained following the method of numerical solution indicated in paragraph 6 

and discussed in detail in paragraph 7.2. 

1 

In order  to study the characterist ics of the landing trajectory start ing at 

the apogee of the initial orbit with a retro-impulse,  w e  notice that f r o m  Eqs. 

(61) and (62) we can obtain 

( 9 0 )  

Eqs. (62) and (90) imply Eq. (61) [which is precisely the necessary condition fo r  

a non-trivial solution (E z 

01. Thus, Eqs. (62) and (90) can be used as the set of necessary conditions for  

a free-range optimum, instead of Eqs. (61)  and (62). 

cos e 2  - A z cos e l )  = 0 ,  z cos( 6 - 6 ) - z2 cos( 6 - e,) = 
1 2 1 2 2  1 

The t ransfer  orbit starting a t  apogee with a retro- thrust  (i.e., e l =  8. = 0 ,  
1 

b1 = 7 )  obviously satisfied Eq. (62) since sin(6 - e l )  = 0 and sin8 = 0. Also, 
1 1 

regarding the landing conditions, sin 62 = 0 and sin( 6 

satisfy Eq. (90). 

conditions. 

z # 0 ,  of # 0),  such t ransfer  i s  not admissible due to the fact  that sin( 6 - 6,) = 0 

- e2) = 0 obviously 2 
Thus a Hohmann type t ransfer  would satisfy both necessary 

However, in v i e w  of the final boundary conditions imposed (i. e., 

f 2 

2 1  



a 

implies a terminal tangential thrust which can not satisfy the end- values 

specified. 1 
does not satisfy the necessary conditions for  an optimum derived. 

a t  point 2 ( see  Fig.  3)  the orbit starting a t  the apogee (or  perigee) of the initial 

orbit with a tangential thrust  must have 8 # 0. Numerical solutions have 

shown that 8 

close to a Hohmann transfer.  Due to these facts ( i .e . ,  6 < 0, and small)  

the angle of direction of the second impulse resul ts  b 2  77 , ( see  Fig .  7). 

Thus a Hohmann type t ransfer  (i. e. , transfer with 6 = 6 = 0 ) 

Consequently, 

2 
< 0, and in our case very  small ,  so the t ransfer  orbit  resul ts  

2 

2 

The optimum landing trajectories starting a t  points on the initial ellipse 

other than i ts  apogee o r  perigee (i. e . ,  8. f 0) can not follow a Hohmann type 

t ransfer  (viz., a t ransfer  with 8 

sin(6 

b 2  = 0 o r  6 

of these solutions can satisfy the specified terminal condition 8 

Thus, e 2  # 0. In general, the numerical  solutions obtained show that 6 

Its  magnitude, depends on the characterist ics of the initial orbit. In our 

applications 8 i s  very small. 2 
7 .2  Results of Numerical Solutions 

1 

= 0). This i s  due to the fact  that, since 
2 

- e l )  # 0 and sin 6 # 0, then if  8 1 2 = 0, Eq. (61) leads to the condition 

Again, a s  before, none 

= - 
= n (tangential forward o r  retro-thrust) .  

n 
2 

2 -. f 
< 0. 2 

Several minimum fuel consumption solutions starting a t  different points 

of the initial elliptical orbit assumed were computed. 

fuel consumption was obtained f o r  a landing trajectory starting a t  the apogee of 

the initial orbit. The fuel consumption in our application was 

initial total weight of the vehicle. 

the minimum fuel t ra jector ies  starting a t  different points on the initial ellipse, 

w a s  obtained for that one starting a t  the perigee of the initial orbit. 

the difference in fuel consumption between these two cases  depends on the 

eccentricity of the initial orbit. 

of the initial orbit assumed the perigee solution required only 5% more fuel than 

the apogee solution. 

The absolute minimum 

57.77" of the 

The maximum fuel consumption, among a l l  

In general, 

Thus, in our case,  due to the low eccentricity 

The minimum fuel consumption t ra jector ies  starting a t  a radius 

Pi = 2.8 a r e  shown in Figs. 8 and 9. 

the second to 6 .  < 0. 

The f i r s t  corresponds to 8 > 0 and 
i 

A s  can be seen in these figures the solutions obtained 
1 
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t 

. 

are grazing trajectories,  almost tangent to the surface of the moon at the 

landing point. 

other optimum trajectories starting from the same elliptical orbit ,  at the 

same radius, but with different in i t ia l  angle of attitude). 

starting with 8 

In both cases  the fuel consumption is  the same (as it is fo r  all 

The t ra jectory 

> 0 gives larger  range than the one starting with 8 .  < 0. i 1 

The procedure of numerical solution followed w a s  described in pa ra -  

graph 6 and numerical resul ts  a r e  presented in Figs .  10 and 11. 

f igures show the resul ts  obtained for different landing t ra jector ies  starting 

f rom the initial elliptical orbit at a radius P = 1.9 and at an angle of attitude 

8 = - 17.5 . All  these trajectories satisfy the same terminal conditions. A s  

indicated before,  we take an arbi t rary direction 8 

a solution of Eq. (67). The values of z 

mined by the constraints in Eqs. (88) and (89). 

the value of 6 

These 

i 
0 

i 
and vary z searching for 

searched have an upper bound de ter -  

1 

1 1 

1 
For each z (and a given 8 1) 

is obtained f rom Eq. (68), o r  Eqs. (83) and (84). These values 1 
b1 and 8 a r e  replaced in Eq. (67). The set  which satisfied that 

1' 1 of z 

2' and the second impulse direction 6 2' z2 equation is used to compute 6 

z = 0.00184. F o r  which satisfy the terminal landing conditions 8, = - n /2  , 
this we use Eqs. (79), (81) and (82) o r  Eqs. (85) and (86)] . The propellant 

expenditure is  obtained f rom Eq. (87). 

f 

I 
The previous search w a s  done rapidly by means of a computer program 

specifically designed to be fully automatic. 

To the extent of determining the character of the solutions obtained and 

identify the optimum solution we introduced a function h which is the square 

root of the sum of the squares of Eqs. (61) and (62). vanishes only when 

both equations vanish, thus identifying the optimum solution. 

The numerical  solutions shown in Figs. 10 and 11 exhibit the resul ts  

Note that the constraints in Eqs. (88) and obtained for the case considered. 

(89)' limit the range of possible solutions, ( L e . ,  - 170 

shows that h vanishes for 8 = - 19 , thus determining the optimum orbit. 

Also, i t  shows that for a given initial radius the optimum solution is unique. 

Since 6 = - 17.5 , we see that the optimum angle (8 = - 19 ) is very close 

to the initial angle. 

0 
8 5 - 19'. Fig.  10 1 

0 

1 

0 0 

i 1 
However, they can not be equal since no solution is 
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admissible with tangential thrust  (i. e. , for 8 

Fig. 10 and w a s  demonstrated in paragraph 7.1. 

= 8 .  ). This can be seen in 
1 

Fig. 11 shows the final mass  of the vehicle a s  a function of 6 In 

general, F ig .  11 appears to indicate that the extremum - -  fo r  the case  con- 

sidered -- i s  not too sensitive to variations in 8 (and consequently z1 and 

6 l). 

cause an extra expenditure of only about 570 of fuel, in order  to land the 

vehicle along a non-optimum, admissible trajectory,  satisfying the same 

boundary values. 

1 
0 

Note that an e r r o r  Ae = - 10 with respect to the optimum e,, would 
1 

I " 
7.3 Given-Range Optimum Solution 

The given-range optimum trajector ies  may be obtained following a 

numerical  search similar to that described for  free-range problems in para-  

graph 7.2. 

Eq. (78). 

dimensional search of z 

satisfying Eq. (78) and the range condition imposed. 

minimum fuel solution starting at a radius P 

orbit and giving a range r) = 57 , is shown in Fig.  12. The optimum equation 

for given -range problems Eq. (78), confirms our considerations in paragraph 

7.1 regarding the non-admissibility of Hohmann type t ransfers  , for  landings 

start ing a t  the apogee or perigee of the initial orbit with tangential impulses. 

In fact ,  for the same range and boundary-conditions, the given-range and f r e e -  

range optimum trajector ies  must be the same. 

optimum for  the free-range problem it should be optimum for  the problem with 

given-range r) = n .  However, in such case,  el  = e 2  = 0, b 1  = m ,  and b 2  # 0, 

in order  to satisfy the end-conditions. 

In this case,  the optimum condition to be satisfied i s  given by 

Using Eqs. (79) to (82) and (83) to (86), we can apply a one- 

in order  to determine the set  for  each given 8 1 1' 
An example of the 

= 2.8 ( e .  < 0) on the initial 
i 1 

0 

Thus, if the Homann t ransfer  is 

Thus, Eq. (78) leads to 

- 1) 
sin 6 = O . 

2 

( E z l - A z  2 

1 
1 t A z 2 (A z12 - 2) 

Eq. (91) i s  satisfied for  6 = 0, which i s  not compatible with the end-values 

imposed, fo r  A z 
2 

- 1 = 0, which implies a circular  t ransfer  orbit thus not 
1 
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admissible,  and for E z - A z = 0, which is not admissible by virtue of 

Eq. (31). Thus, these considerations confirm the non-admissibility of 

Homann type t ransfers  in the case considered. 

1 2 

Similarly, fo r  problems in which sin(6 - 8 1) # 0 and sin 8 1 1 # 0, 

(i. e . ,  for transfer orbits starting a t  points other than the apogee o r  perigee 

of the initial orbit) ,  the free-range solution satisfied the given-range solution 

for the same range and boundary conditions. 

optimum trajectory is the same. 

Eqs. (61), (62) and ( 9 0 ) ,  then the same solution must satisfy Eq. (78). 

can easily be seen writing Eq. (78) in the form 

In both cases  the resulting 

Thus, since the free-range solution sat isf ies  

This 

I c o s ( 6 2 - 8 2 ) - z 2 ~ ~ s ( ~ 1 - ~ l )  t sin(6 - B 2 ) ( E z  c o s 6  2 - A  z 2 c o s e l )  1 2 1 

c o s ( 6 2 - e 2 ) -  z 2 c o s ( ~ l - e l ; l t  sin(6 1 1  -e ) ( E Z  1 c o s 8  2 - A  z 2 c o s e l )  

- (zl f Z  - z f )[EsinBZ sin(6 1 - e l )  - A  s i n e  1 sin(6 2 - e 2 ) ]  = 0 .  (92) 
1 2 z  2 

Eq. (92) contains Eqs. (61), (62) and (90) in i t s  terms.  

the f r e e  -range trajectory obviously sat isf ies  the necessary condition of the given- 

range problem. 

Thus, fo r  the same range, 

However, fo r  the same boundary-value problem the solution of 

the given-range problem, with arbi t rar i ly  specified range, i s  no longer satisfied 

by the free-range solution. 

problems, in general, each te rm of Eq. (92) does not necessarily vanish a s  i t  

i s  required by the solution of the free-range problem. 

This is due to the fact that, for given-range 
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Figure 3. Characterist ics of the Landing Trajector ies  Considered. 
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Figure 4. Geometry of the Impulse. 
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Figure 7. Geometry of the Lunar Landing. 
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Figure 8. Minimum Fuel  Consumption Landing for p = 2.8 and F r e e -  
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Range (Case 8 > 0). i 
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Range (Case  8 0). i 

36 



I .o 

.9 

.8 

.7 

.6 

A .5 

.4 

.3 

.2 

.I IPTIMUM SOLUTION \ 

00 - 200 - 400 - 60" - 80" - 100" - 120" - 140" - 160" - 180" 

1 '  Figure  10. A - Function fo r  = 1.9 and Variab le  8 i 

N40/-77/A 

37 



? 

.5 

.4 

.3 

Pf 

. 2  

. I  

MINIMUM FUEL 
CONSUMPTION 

1 pi = 1.9 1 

I I I I I I I I I 
00 - 200 - 400 - 600 - 80" - looo - 120" - 140' - 160" - 180' 

4 N40l -  770A 

F i g u r e  11. Final M a s s  for p i  = 1.9 and Var iab le  8 . 

38 



I 

r .  

r 

N 401-866 

t 

Figure 12. Minimum Fuel Consumption Landing for P = 2.8 and Range 
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